STRUCTURES OF NOVEL ANTIBIOTICS, FURAQUINOCINS A AND B

Shinji Funayama, Masami Ishibashi, Yumi Anraku, Kanki Komiyama and Satoshi Ōmura*

The Kitasato Institute, and School of Phamaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108, Japan

Summary: Structures of novel citocydal antibiotics furaquinocins A and B, isolated from the fermentation broth of *Streptomyces* sp. KO-3988, was elucidated on the basis of spectroscopic analyses.

In the course of a screening program for novel antibiotics possessing cytocidal activity, furaquinocins A (1) and B (2) were isolated from the fermentation broth of *Streptomyces* sp. KO-3988.¹ These antibiotics exhibited strong activity against HeLa S₃ cells *in vitro* at concentration of 3.1 and 1.6 μ g/mL, respectively. This paper describes the structure elucidation of furaquinocins A (1) and B (2).

Furaquinocin A (1), ² yellow needles, mp 182-183 °C, $[\alpha]_D^{19}$ -46° (*c* 0.58, CHCl₃), and furaquinocin B (2),³ yellow needles, mp 101-104 °C, $[\alpha]_D^{19}$ -132° (*c* 0.57, CHCl₃), showed similar UV and IR absorption spectra, suggesting the presence of the same chromophore. The EIMS of 1 and 2 showed mainly the molecular ion at *m/z* 402 in the beginning of measurement and then a gradual increase in an ion of the reduced form (*m/z* 404, M⁺+2) to predominate as described for quinones or related compounds.⁴ A common molecular formula, C₂₂H₂₆O₇, for furaquinocins A and B was established by elemental analysis [1: Found, C 63.10, H: 6.77; Calcd, C 62.85, H 6.71 for C₂₂H₂₆O₇·H₂O] and high resolution EIMS [2: Found *m/z* 402.1681, Calcd for C₂₂H₂₆O₇: M, 402.1677].

¹H and ¹³C NMR spectra of 1 and 2 were also analogous to each other and DEPT

experiments revealed that both compounds possessed the following groups: $4 \times -CH_3$, $1 \times -CH_2$, $1 \times -C-$, $1 \times CH_3O$, $1 \times -CH_2O$, $2 \times -CH-O$, $2 \times =CH$, $8 \times =C$, and $2 \times -C=O$. This accounts for 22 carbons and 23 protons. The three missing protons belong to 3 hydroxyl groups, which was confirmed by acetylation of 1 to form a triacetate [3, m/z 528 (M+)]. One of three hydroxyl groups was on an aromatic ring, viz., a phenol, which was shown by treatment of 1 with trimethylsilyldiazomethane and diisopropylethylamine⁵ to give an *O*-methyl ether [4, m/z 418 (M+2)+].

The extensive 1D and 2D NMR experiments were carried out by using furaquinocin B (2). The ¹H-¹H COSY spectrum of 2 revealed cross peaks for Me-2/H-2, H-10/H₂-11, H₂-11/H-12, and H-12/H₃-15. The ¹H-¹³C COSY experiment provided definitive assignments for all protonated carbons as shown in Table 1. The presence of a

¹³ C		¹ H	LSPD (¹ H)
1	-		····
2	88.9 d	4.69 q	Me-2, Me-3
Me-2	16.1 q	1.32 d (3H)	
3	52.4 s		Me-2, Me-3, H-10
Me-3	18.9 q	1.37 s (3H)	
3a	124.5 s		H-5, H-10
4	158.4 s		H-5
5	110.7 d	7.15 s	
5a	134.1 s		H-5
6	180.7 s		H-5, Me-8
7	156.9 s		MeO-7, Me-8
MeO-7	60.7q	4.00 s (3H)	
8	133.7 s		Me-8
Me-8	9.3 q	2.04 s (3H)	
9	183.7 s		Me-8
9a	109.2 s		H-5
9b	160.4 s		H-2
10	73.0 d	4.07 dd	H-11
11	31.9 t	2.57 dt	
		2.19 ddd	
12	120.1 d	5.52 m	
13	140.0 s		H ₂ -14, H ₃ -15
14	68.0 t	4.09 s (2H)	
15	14.3 q	1.74 brs (3H)	

 Table 1. ¹H and ¹³C NMR Chemical Shifts (in CDCI₃) of Furaquinocin B (2) and Protons to Which a Long-Range Correlation Was Observed in the LSPD Experiment

J (H/H) in Hz: Me-2/2=6.5; 10/11=10, 10/11'=1; 11/11'=14.5; 11/12=10; 11'/12=4.5

naphthoquinone group as well as three partial structures 2a-2c (Fig. 1) were thus deduced by these NMR data. The EIMS of 2 gave an intense peak at m/z 287 (M⁺-

C6H11O2) which was due to the fragment ion generated by loss of the segment 2a. The high-field resonance for the olefinic methyl (C-15, Sc 14.3) of 2 implied 12E-Further information on the structural framework was obtained by configuration.6 analyzing the ¹H-¹³C long range couplings observed through the LSPD experiments.⁷ As summarized in Table 1, the location of the substituents on the naphthoquinone ring was clealy disclosed. The methyl protons at δ_H 2.04 were coupled obviously with C-7 (J=4.5 Hz), C-8 (J=6.5 Hz), and C-9 (J=3.5 Hz), and weakly with C-6 (J<1 Hz). The methoxy protons at δ_{H} 4.00 showed connectivity with C-7 (J=3.5 Hz). Thus the methyl and the methoxy groups were shown to be on C-8 and C-7, respectively. On irradiation of the aromatic proton at δ_H 7.15 signals for C-3a, C-4, C-5a, C-6, and C-9a were simplified. This observation along with consideration of the ¹³C chemical shifts indicated that the aromatic proton was on C-5, an alkyl group on C-3a (δ_C 124.5), and oxygen atoms on C-4 (δ_C 158.4) and C-9b (δ_C 160.4). Three segments **2a-2c** and the naphthoquinone ring were connected with one another as follows. On irradiation of H-2 (δ_{H} 4.69), the doublet-like signal (J=5.5 Hz) for C-9b collapsed into a singlet, suggesting that the oxygen in the segment 2c was attached to C-9b to form an ether linkage. The remaining oxygenated carbon (C-4), therefore, bore the phenol group. The methyl protons (δ_H 1.32) on C-2 showed connectivity with C-3 in addition to C-2, while the methyl protons (8µ 1.37) on C-3 was coupled with C-2 as well as C-3. Thus C-2 in 2c was connected with C-3 in Irradiation of the hydroxymethine proton at δ_{H} 4.07 (H-10) simplified the signals 2c. for not only C-3 but also C-3a, which indicated that C-10 in 2a was connected with C-3 in 2b, and C-3 was in turn with C-3a, consequently to construct a dihydrofuran ring The structure of furaquinocin B was, therefore, attached to the naphthoquinone. concluded to be 2.

The difference in the structure of furaquinocin A (1) from that of 2 was found only in the olefin-geometry in the side chain. The olefinic methyl of 1, on comparison with that of 2, resonated in the lower field (1: $\delta_{\rm C}$ 23.2; 2: $\delta_{\rm C}$ 14.3), while the hydroxymethyl carbon of 1 was in the higher field (1: $\delta_{\rm C}$ 61.4; 2: $\delta_{\rm C}$ 68.0). This observation revealed 12Z for 1.⁶ NOE results using the *O*-methyl ether (4) were coincident as shown in (Fig. 2) and provided additional proof for the adjacent location of the following groups: H-5/MeO on C-4, Me-8/MeO on C-7, and H-2/Me-3. Observation of 12% NOE from Me-3 to H-2 suggested the relative configuration of Me-2 and Me-3 to be *trans*.

The biogenesis of furaquinocins A and B may raise an interesting subject since these compounds possess a unique structure consisting of the chromophore of naphtho[1,2b]furan-6,9-dione with an isoprenoid-like side chain. The biosynthetic pathway of 1 and 2 is currently under investigation. Studies on the absolute stereochemistry of 1 or 2 as well as other accompanying components in the *Streptomyces* sp. KO-3988 are in progress.

<u>Acknowledgements</u>: This work was supported, in part, by Grant-in Aid from the Ministry of Education, Science and Culture, and by funds from the Japan Keirin Association.

References and Notes

- 1. Komiyama, K.; Funayama, S.; Anraku, Y.; Ishibashi, M.; Takahashi, Y.; Omura, S., J. Antibiotics, submitted for publication.
- 2. UV (MeOH) 222, 268, 292, and 408 nm; IR (KBr) 3450, 1672, 1643, 1381, and 1115 cm⁻¹; ¹H NMR (CDCl₃) δ_{H} 1.31 (3H, s; Me-3), 1.30 (3H, d, *J*=6 Hz; Me-2), 1.86 (3H, br s; H₃-14), 2.03 (3H, s; Me-8), 2.13 (1H, dd, *J*=14.5 and 6 Hz; H-11), 2.61 (1H, dt, *J*=14.5 and 10 Hz; H'-11), 3.95 (1H, d, *J*=10 Hz; H-10), 3.98 (3H, s; MeO), 4.00 (1H, d, *J*=11.5 Hz; H-15), 4.41 (1H, d, *J*=11.5 Hz; H'-15), 4.67 (1H, q, *J*=6 Hz; H-2), 5.50 (1H, dd, *J*=10 and 6 Hz; H-12), 7.12 (1H, s; H-5), and 11.32 (1H, br s; OH-4); ¹³C NMR (CDCl₃) δ_{C} 9.3 (q, Me-8), 16.1 (q, Me-2), 18.9 (q, Me-3), 23.2 (q, C-14), 32.4 (t, C-11), 52.8 (s, C-3), 60.6 (q, MeO), 61.4 (t, C-15), 71.4 (d, C-10), 88.9 (d, C-2), 108.8 (s, C-9a), 111.0 (d, C-5), 124.6 (s, C-3a), 124.9 (d, C-12), 133.6 (s, C-8), 134.0 (s, C-5a), 138.3 (s, C-13), 156.9 (s, C-7), 158.9 (s, C-4), 160.6 (s, C-9b), 180.8 (s, C-6), and 183.8 (s, C-9); EIMS *m/z* 402 (M+), 287, 273, and 259.
- 3. UV (MeOH) 223, 269, 294, and 410 nm; IR (KBr) 3450, 1659, 1635, 1368, and 1100 cm⁻¹; EIMS *m/z* 402 (M⁺), 287, 273, and 259.
- Kobayashi, J.; Cheng, J.-F.; Walchli, M. R.; Nakamura, H.; Hirata, Y.; Sasaki, T.; Ohizumi, Y. J. Org. Chem. 1988, 53, 1800-1804.
- 5. Aoyama, T.; Terasawa, S.; Sudo, K.; Shioiri, T. *Chem. Pharm. Bull.* **1984**, *32*, 3759-3760.
- 6. Carey, L.; Clough, J. M.; Pattenden, G. J. Chem. Soc, Perkin Trans. / 1983, 3005-3009.
- 7. Masuda, K.; Funayama, S.; Komiyama, K.; Umezawa, I.; Ito, K. J. Nat. Prod. 1987, 50, 958-960.

(Received in Japan 4 October 1989)